Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534310

ABSTRACT

Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), as well as (iii) the serotonin (5-HT)1A receptor's role in CBD's mechanism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM CBD alone and combined with Δ9-THC was evaluated. To examine CBD's mechanism of action, slices were pre-treated with a 5-HT1A receptor antagonist before CBD's effect was evaluated. An amount of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However, 10 µM CBD combined with low-dose Δ9-THC (20:3 ratio) displayed significantly greater anticonvulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A receptors before CBD application significantly abolished CBD's effects. Thus, our results demonstrate the efficacy of low-dose CBD and Δ9-THC combined and that CBD exerts its effects, at least in part, through 5-HT1A receptors. These results could address drug-resistance while providing insight into CBD's mechanism of action, laying the groundwork for further testing of cannabinoids as anticonvulsants.


Subject(s)
Cannabidiol , Cannabinoids , Neocortex , Mice , Animals , Cannabidiol/pharmacology , Anticonvulsants/therapeutic use , Dronabinol , Receptor, Serotonin, 5-HT1A , Cannabinoids/therapeutic use , Serotonin
2.
Neurotherapeutics ; 21(1): e00298, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241157

ABSTRACT

Spreading depolarizations (SDs) are an enigmatic and ubiquitous co-morbidity of neural dysfunction. SDs are propagating waves of local field depolarization and increased extracellular potassium. They increase the metabolic demand on brain tissue, resulting in changes in tissue blood flow, and are associated with adverse neurological consequences including stroke, epilepsy, neurotrauma, and migraine. Their occurrence is associated with poor patient prognosis through mechanisms which are only partially understood. Here we show in vivo that two (structurally dissimilar) drugs, which suppress astroglial gap junctional communication, can acutely suppress SDs. We found that mefloquine hydrochloride (MQH), administered IP, slowed the propagation of the SD potassium waveform and intermittently led to its suppression. The hemodynamic response was similarly delayed and intermittently suppressed. Furthermore, in instances where SD led to transient tissue swelling, MQH reduced observable tissue displacement. Administration of meclofenamic acid (MFA) IP was found to reduce blood flow, both proximal and distal, to the site of SD induction, preceding a large reduction in the amplitude of the SD-associated potassium wave. We introduce a novel image processing scheme for SD wavefront localization under low-contrast imaging conditions permitting full-field wavefront velocity mapping and wavefront parametrization. We found that MQH administration delayed SD wavefront's optical correlates. These two clinically used drugs, both gap junctional blockers found to distinctly suppress SDs, may be of therapeutic benefit in the various brain disorders associated with recurrent SDs.


Subject(s)
Cortical Spreading Depression , Epilepsy , Stroke , Humans , Potassium/pharmacology , Multimodal Imaging
3.
Heliyon ; 9(4): e14999, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089352

ABSTRACT

Epilepsy is a common neurological disorder that affects 1% of the global population. The neonatal period constitutes the highest incidence of seizures. Despite the continual developments in seizure modelling and anti-epileptic drug development, the mechanisms involved in neonatal seizures remain poorly understood. This leaves infants with neonatal seizures at a high risk of death, poor prognosis of recovery and risk of developing neurological disorders later in life. Current in vitro platforms for modelling adult and neonatal epilepsies - namely acute cerebral brain slices or cell-derived cultures, both derived from animals-either lack a complex cytoarchitecture, high-throughput capabilities or physiological similarities to the neonatal human brain. Cerebral organoids, derived from human embryonic stem cells (hESCs), are an emerging technology that could better model neurodevelopmental disorders in the developing human brain. Herein, we study induced hyperexcitability in human cerebral cortical organoids - setting the groundwork for neonatal seizure modelling - using electrophysiological techniques and pharmacological manipulations. In neonatal seizures, energy failure - specifically due to deprivation of oxygen and glucose - is a consistent and reliable seizure induction method that has been used to study the underlying cellular and molecular mechanisms. Here, we applied oxygen-glucose deprivation (OGD) as well as common chemoconvulsants in 3-7-month-old cerebral organoids. Remarkably, OGD resulted in hyperexcitability, with increased power and spontaneous events compared to other common convulsants tested at the population level. These findings characterize OGD as the stimulus most capable of inducing hyperexcitable changes in cerebral organoid tissue, which could be extended to future modelling of neonatal epilepsies in cerebral organoids.

4.
Neurobiol Dis ; 160: 105529, 2021 12.
Article in English | MEDLINE | ID: mdl-34634460

ABSTRACT

Loss of function mutations of the WW domain-containing oxidoreductase (WWOX) gene are associated with severe and fatal drug-resistant pediatric epileptic encephalopathy. Epileptic seizures are typically characterized by neuronal hyperexcitability; however, the specific contribution of WWOX to that hyperexcitability has yet to be investigated. Using a mouse model of neuronal Wwox-deletion that exhibit spontaneous seizures, in vitro whole-cell and field potential electrophysiological characterization identified spontaneous bursting activity in the neocortex, a marker of the underlying network hyperexcitability. Spectral analysis of the neocortical bursting events highlighted increased phase-amplitude coupling, and a propagation from layer II/III to layer V. These bursts were NMDAR and gap junction dependent. In layer II/III pyramidal neurons, Wwox knockout mice demonstrated elevated amplitude of excitatory post-synaptic currents, whereas the frequency and amplitude of inhibitory post-synaptic currents were reduced, as compared to heterozygote and wild-type littermate controls. Furthermore, these neurons were depolarized and demonstrated increased action potential frequency, sag current, and post-inhibitory rebound. These findings suggest WWOX plays an essential role in balancing neocortical excitability and provide insight towards developing therapeutics for those suffering from WWOX disorders.


Subject(s)
Action Potentials/physiology , Epilepsy/physiopathology , Neocortex/physiopathology , Pyramidal Cells/physiology , WW Domain-Containing Oxidoreductase/genetics , Animals , Epilepsy/genetics , Mice , Mice, Knockout
5.
Brain ; 144(10): 3061-3077, 2021 11 29.
Article in English | MEDLINE | ID: mdl-33914858

ABSTRACT

WWOX-related epileptic encephalopathy (WOREE) syndrome caused by human germline bi-allelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.


Subject(s)
Epilepsy/genetics , Gene Deletion , Myelin Sheath/genetics , Neurons/physiology , WW Domain-Containing Oxidoreductase/deficiency , WW Domain-Containing Oxidoreductase/genetics , Animals , Brain/pathology , Coculture Techniques , Epilepsy/pathology , Humans , Mice , Mice, Knockout , Mice, Transgenic , Myelin Sheath/pathology , Neurons/pathology , Organoids , WW Domain-Containing Oxidoreductase/antagonists & inhibitors
6.
Neurobiol Dis ; 147: 105160, 2021 01.
Article in English | MEDLINE | ID: mdl-33152505

ABSTRACT

Raised extracellular potassium ion (K+) concentration is associated with several disorders including migraine, stroke, neurotrauma and epilepsy. K+ spatial buffering is a well-known mechanism for extracellular K+ regulation/distribution. Astrocytic gap junction-mediated buffering is a controversial candidate for K+ spatial buffering. To further investigate the existence of a K+ spatial buffering and to assess the involvement of astrocytic gap junctional coupling in K+ redistribution, we hypothesized that neocortical K+ and concomitant spreading depolarization (SD)-like responses are controlled by powerful local K+ buffering mechanisms and that K+ buffering/redistribution occurs partially through gap junctional coupling. Herein, we show, in vivo, that a threshold amount of focally applied KCl is required to trigger local and/or distal K+ responses, accompanied by a SD-like response. This observation indicates the presence of powerful local K+ buffering which mediates a rapid return of extracellular K+ to the baseline. Application of gap junctional blockers, carbenoxolone and Gap27, partially modulated the amplitude and shape of the K+ response and noticeably decreased the velocity of the spreading K+ and SD-like responses. Opening of gap junctions by trimethylamine, slightly decreased the amplitude of the K+ response and markedly increased the velocity of redistribution of K+ and SD-like events. We conclude that spreading K+ responses reflect powerful local K+ buffering mechanisms which are partially modulated by gap junctional communication. Gap junctional coupling mainly affected the velocity of the K+ and SD-like responses.


Subject(s)
Astrocytes/metabolism , Cortical Spreading Depression/physiology , Gap Junctions/metabolism , Neocortex/metabolism , Potassium/metabolism , Animals , Mice , Neocortex/physiology
7.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053775

ABSTRACT

OBJECTIVE: Pannexin-1 (Panx1) is suspected of having a critical role in modulating neuronal excitability and acute neurological insults. Herein, we assess the changes in behavioral and electrophysiological markers of excitability associated with Panx1 via three distinct models of epilepsy. Methods Control and Panx1 knockout C57Bl/6 mice of both sexes were monitored for their behavioral and electrographic responses to seizure-generating stimuli in three epilepsy models-(1) systemic injection of pentylenetetrazol, (2) acute electrical kindling of the hippocampus and (3) neocortical slice exposure to 4-aminopyridine. Phase-amplitude cross-frequency coupling was used to assess changes in an epileptogenic state resulting from Panx1 deletion. RESULTS: Seizure activity was suppressed in Panx1 knockouts and by application of Panx1 channel blockers, Brilliant Blue-FCF and probenecid, across all epilepsy models. In response to pentylenetetrazol, WT mice spent a greater proportion of time experiencing severe (stage 6) seizures as compared to Panx1-deficient mice. Following electrical stimulation of the hippocampal CA3 region, Panx1 knockouts had significantly shorter evoked afterdischarges and were resistant to kindling. In response to 4-aminopyridine, neocortical field recordings in slices of Panx1 knockout mice showed reduced instances of electrographic seizure-like events. Cross-frequency coupling analysis of these field potentials highlighted a reduced coupling of excitatory delta-gamma and delta-HF rhythms in the Panx1 knockout. SIGNIFICANCE: These results suggest that Panx1 plays a pivotal role in maintaining neuronal hyperexcitability in epilepsy models and that genetic or pharmacological targeting of Panx1 has anti-convulsant effects.


Subject(s)
Connexins/deficiency , Epilepsy/etiology , Epilepsy/physiopathology , Nerve Tissue Proteins/deficiency , Phenotype , Animals , Brain Waves , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/physiopathology , Disease Models, Animal , Electric Stimulation , Female , Genetic Association Studies , Genetic Predisposition to Disease , Kindling, Neurologic , Mice , Mice, Knockout , Seizures
8.
Neurosci Lett ; 695: 71-75, 2019 03 16.
Article in English | MEDLINE | ID: mdl-28886985

ABSTRACT

Pannexin-1 (Panx1) expression is raised in several animal seizure models and in resected human epileptic brain tissue, suggesting relevance to epilepsy. Multiple factors that are characteristic of seizures are thought to regulate Panx1 channel opening, including elevated levels of extracellular K+. Panx1, when open, 1) releases ATP, glutamate, and other metabolites into the extracellular medium, and 2) may depolarize the membrane due to a channel reversal potential around 0mV. Resultant ATP release from stimulated Panx1 can activate purinergic receptors, including P2X7 receptors. Glutamate and other signaling molecules released by Panx1 opening may have both excitatory and inhibitory actions on seizure generation. This review examines the critical and complex roles of Panx1 channels in epilepsy, which could provide a basis for future therapeutics.


Subject(s)
Connexins/metabolism , Epilepsy/metabolism , Nerve Tissue Proteins/metabolism , Animals , Humans , Neurons/metabolism , Receptors, Purinergic P2X7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...